加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

预测性维护:使用卷积神经网络(CNN)检测传感器故障

发布时间:2019-06-03 21:10:02 所属栏目:建站 来源:不靠谱的猫
导读:在机器学习中,随着时间的推移,预测维修的话题变得越来越流行。 在本文中,我们将看一个分类问题。我们将使用Keras创建一个卷积神经网络(CNN)模型,并尝试对结果进行直观的解释。 数据集 我决定从evergreen UCI repository(液压系统的状态监测)中获取
副标题[/!--empirenews.page--]

 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

在机器学习中,随着时间的推移,预测维修的话题变得越来越流行。

在本文中,我们将看一个分类问题。我们将使用Keras创建一个卷积神经网络(CNN)模型,并尝试对结果进行直观的解释。

数据集

我决定从evergreen UCI repository(液压系统的状态监测)中获取机器学习数据集(https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems#)。

该试验台由一次工作回路和二级冷却过滤回路组成,通过油箱连接。系统循环重复恒定负载循环(持续时间60秒)并测量过程值,例如压力,体积流量和温度,同时定量地改变四个液压元件(冷却器、阀门、泵和蓄能器)的状态。

我们可以想象有一个液压管道系统,该系统周期性地接收到由于管道内某种液体的转变而产生的脉冲。此现象持续60秒,采用不同Hz频率的传感器(传感器物理量单位采样率,PS1 Pressure bar, PS2 Pressure bar, PS3 Pressure bar, PS4 Pressure bar, PS5 Pressure bar, PS6 Pressure bar, EPS1电机功率, FS1体积流量, FS2体积流量, TS1温度, TS2温度, TS3温度, TS4温度, VS1振动, VS1振动、CE冷却效率、CP冷却功率、SE效率系数)进行测量。

我们的目的是预测组成管道的四个液压元件的状况。这些目标条件值以整数值的形式注释(易于编码),并告诉我们每个周期特定组件是否接近失败。

读取数据

每个传感器测量的值在特定的txt文件中可用,其中每一行以时间序列的形式占用一个周期。

我决定考虑来自温度传感器(TS1、TS2、TS3、TS4)的数据,该传感器的测量频率为1 Hz(每一个cicle进行60次观察)。

  1. label = pd.read_csv('profile.txt', sep='    ', header=None) 
  2. data = ['TS1.txt','TS2.txt','TS3.txt','TS4.txt'] 
  3. df = pd.DataFrame() 
  4. #read and concat data 
  5. for txt in data: 
  6.  read_df = pd.read_csv(txt, sep='   ', header=None) 
  7.  df = df.append(read_df) 
  8. #scale data 
  9. def scale(df): 
  10.  return (df - df.mean(axis=0))/df.std(axis=0) 
  11. df = df.apply(scale) 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

对于第一个周期,我们从温度传感器得到这些时间序列:

预测性维护:使用卷积神经网络(CNN)检测传感器故障

Temperature Series for cicle1 from TS1 TS2 TS3 TS4

机器学习模型

为了捕捉有趣的特征和不明显的相关性,我们决定采用一维卷积神经网络(CNN)。这种机器学习模型非常适合对传感器的时间序列进行分析,并强制在短的固定长度段中重塑数据。

我选择了Keras网站上描述的卷积神经网络(CNN),并更新了参数。该机器学习模型的建立是为了对制冷元件的状态进行分类,仅对给出温度时间序列的数组形式(t_period x n_sensor for each single cycle)作为输入。

  1. n_sensors, t_periods = 4, 60 
  2. model = Sequential() 
  3. model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors))) 
  4. model.add(Conv1D(100, 6, activation='relu')) 
  5. model.add(MaxPooling1D(3)) 
  6. model.add(Conv1D(160, 6, activation='relu')) 
  7. model.add(Conv1D(160, 6, activation='relu')) 
  8. model.add(GlobalAveragePooling1D()) 
  9. model.add(Dropout(0.5)) 
  10. model.add(Dense(3, activation='softmax')) 
  11. model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
  12. BATCH_SIZE, EPOCHS = 16, 10 
  13. history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, 
  14.  epochs=EPOCHS, validation_split=0.2, verbose=1) 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

在这种情况下只有10个epochs,我们能够取得惊人的成果!

预测性维护:使用卷积神经网络(CNN)检测传感器故障

对测试数据进行预测,机器学习模型达到0.9909的准确度

预测性维护:使用卷积神经网络(CNN)检测传感器故障

因为通过这种方式,我们能够检测并防止系统中可能出现的故障。

可视化结果

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读