加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 移动互联 > 正文

最易懂的AI芯片报告!人才技术趋势都在这里

发布时间:2018-11-26 16:02:42 所属栏目:移动互联 来源:智东西内参
导读:2010 年以来, 由于大数据产业的发展, 数据量呈现爆炸性增长态势,而传统的计算架构又无法支撑深度学习的大规模并行计算需求, 于是研究界对 AI 芯片进行了新一轮的技术研发与应用研究。 AI 芯片是人工智能时代的技术核心之一,决定了平台的基础架构和发

对全球人工智能芯片领域最具影响力的 1000 人的迁徙路径进行了统计分析,得出下图所示的各国人才逆顺差对比。

清华出品:最易懂的AI芯片报告!人才技术趋势都在这里

▲各国人才逆顺差

可以看出,各国人才的流失和引进是相对比较均衡的,其中美国为人才流动大国,人才输入和输出幅度都大幅度领先。英国、 中国、 德国和瑞士等国次于美国,但各国之间人才流动相差并不明显。

二、AI 芯片的分类及技术

人工智能芯片目前有两种发展路径:一种是延续传统计算架构,加速硬件计算能力,主要以 3 种类型的芯片为代表,即 GPU、 FPGA、 ASIC,但 CPU依旧发挥着不可替代的作用;另一种是颠覆经典的冯·诺依曼计算架构,采用类脑神经结构来提升计算能力, 以 IBM TrueNorth 芯片为代表。

1、传统的 CPU

计算机工业从 1960 年代早期开始使用 CPU 这个术语。迄今为止, CPU 从形态、设计到实现都已发生了巨大的变化,但是其基本工作原理却一直没有大的改变。 通常 CPU 由控制器和运算器这两个主要部件组成。 传统的 CPU 内部结构图如图 3 所示, 从图中我们可以看到:实质上仅单独的 ALU 模块(逻辑运算单元)是用来完成数据计算的,其他各个模块的存在都是为了保证指令能够一条接一条的有序执行。这种通用性结构对于传统的编程计算模式非常适合,同时可以通过提升 CPU 主频(提升单位时间内执行指令的条数)来提升计算速度。 但对于深度学习中的并不需要太多的程序指令、 却需要海量数据运算的计算需求, 这种结构就显得有些力不从心。尤其是在功耗限制下, 无法通过无限制的提升 CPU 和内存的工作频率来加快指令执行速度, 这种情况导致 CPU 系统的发展遇到不可逾越的瓶颈。

清华出品:最易懂的AI芯片报告!人才技术趋势都在这里

▲传统 CPU 内部结构图(仅 ALU 为主要计算模块)

2、并行加速计算的 GPU

GPU 作为最早从事并行加速计算的处理器,相比 CPU 速度快, 同时比其他加速器芯片编程灵活简单。

传统的 CPU 之所以不适合人工智能算法的执行,主要原因在于其计算指令遵循串行执行的方式,没能发挥出芯片的全部潜力。与之不同的是, GPU 具有高并行结构,在处理图形数据和复杂算法方面拥有比 CPU 更高的效率。对比 GPU 和 CPU 在结构上的差异, CPU大部分面积为控制器和寄存器,而 GPU 拥有更ALU(ARITHMETIC LOGIC UNIT,逻辑运算单元)用于数据处理,这样的结构适合对密集型数据进行并行处理, CPU 与 GPU 的结构对比如图 所示。程序在 GPU系统上的运行速度相较于单核 CPU往往提升几十倍乃至上千倍。随着英伟达、 AMD 等公司不断推进其对 GPU 大规模并行架构的支持,面向通用计算的 GPU(即GPGPU, GENERAL PURPOSE GPU,通用计算图形处理器)已成为加速可并行应用程序的重要手段。

清华出品:最易懂的AI芯片报告!人才技术趋势都在这里

▲CPU 及 GPU 结构对比图(引用自 NVIDIA CUDA 文档)

GPU 的发展历程可分为 3 个阶段, 发展历程如图所示:

第 一 代 GPU(1999 年 以 前 ) , 部 分 功 能 从 CPU 分 离 , 实 现 硬 件 加 速 , 以GE(GEOMETRY ENGINE)为代表,只能起到 3D 图像处理的加速作用,不具有软件编程特性。

第二代 GPU(1999-2005 年), 实现进一步的硬件加速和有限的编程性。 1999 年,英伟达发布了“专为执行复杂的数学和几何计算的” GeForce256 图像处理芯片,将更多的晶体管用作执行单元, 而不是像 CPU 那样用作复杂的控制单元和缓存,将 T&L(TRANSFORM AND LIGHTING)等功能从 CPU 分离出来,实现了快速变换,这成为 GPU 真正出现的标志。之后几年, GPU 技术快速发展,运算速度迅速超过 CPU。 2001 年英伟达和 ATI 分别推出的GEFORCE3 和 RADEON 8500,图形硬件的流水线被定义为流处理器,出现了顶点级可编程性,同时像素级也具有有限的编程性,但 GPU 的整体编程性仍然比较有限。

第三代 GPU(2006年以后), GPU实现方便的编程环境创建, 可以直接编写程序。 2006年英伟达与 ATI分别推出了 CUDA(Compute United Device Architecture,计算统一设备架构)编程环境和 CTM(CLOSE TO THE METAL)编程环境, 使得 GPU 打破图形语言的局限成为真正的并行数据处理超级加速器。

2008 年,苹果公司提出一个通用的并行计算编程平台 OPENCL(OPEN COMPUTING LANGUAGE,开放运算语言),与 CUDA 绑定在英伟达的显卡上不同,OPENCL 和具体的计算设备无关。

清华出品:最易懂的AI芯片报告!人才技术趋势都在这里

▲GPU 芯片的发展阶段

目前, GPU 已经发展到较为成熟的阶段。谷歌、 FACEBOOK、微软、 TWITTER 和百度等公司都在使用 GPU 分析图片、视频和音频文件,以改进搜索和图像标签等应用功能。此外,很多汽车生产商也在使用 GPU 芯片发展无人驾驶。 不仅如此, GPU 也被应用于VR/AR 相关的产业。

但是 GPU也有一定的局限性。 深度学习算法分为训练和推断两部分, GPU 平台在算法训练上非常高效。但在推断中对于单项输入进行处理的时候,并行计算的优势不能完全发挥出来。

3、半定制化的 FPGA

FPGA 是在 PAL、 GAL、 CPLD 等可编程器件基础上进一步发展的产物。用户可以通过烧入 FPGA 配置文件来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,比如用户可以把 FPGA 配置成一个微控制器 MCU,使用完毕后可以编辑配置文件把同一个FPGA 配置成一个音频编解码器。因此, 它既解决了定制电路灵活性的不足,又克服了原有可编程器件门电路数有限的缺点。

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读