加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 移动互联 > 正文

谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看?

发布时间:2019-10-28 09:03:49 所属栏目:移动互联 来源:黄合良
导读:2019年8月23日,谷歌在持续重金投入量子计算13年后,成功摘取量子计算领域的一个重要里程碑:实验证明量子优越性,在特定任务上,量子计算机可以大大超越经典计算机的计算能力了。虽然,费曼在38年前就提出了量子并行计算的概念,但是,这个第一次真正确信

此次,谷歌量子AI团队制备了一块包含54个量子比特的超导量子计算芯片,并将其命名为Sycamore。不幸的是,其中一个量子比特坏掉了,所以可用的量子比特只有53个。不过因为坏掉的量子比特在芯片的边缘,基本上不会影响最终实验结果。

这块超导量子芯片基本上汇聚了谷歌量子AI团队这几年所发展的所有先进的实验技术,其中最突出的两项技术是倒装焊封装技术和可调量子耦合器。倒装焊封装技术是一种芯片互连技术,通过倒装焊,可以实现二维排布量子芯片的制备。可调耦合器的作用是调节量子比特间的耦合强度,当我们想让比特间发生耦合实现多比特门时,可以将耦合强度调大,但是当我们不想让比特间发生耦合时,可以关掉耦合器。

谷歌宣称首次实现量子优越性,IBM“不服”,中国同行咋看?

图3  Sycamore芯片的结构和实物图

可调耦合器的突破使得比特间的串扰错误得到有效抑制。从谷歌的基准测试来看,Sycamore芯片在进行并行量子门操控时,还能保持99.84%精度的单比特门、99.38%精度的两比特门以及96.2%精度的读出,综合性能代表了目前超导量子计算的最高水平。

为了说明“量子优越性”,谷歌与目前世界排名第一的超级计算机Summit进行了性能比对。在Sycamore上进行53比特、20深度的量子随机线路采样,200秒约可采样100万次,并且最终结果的保真度预计有0.2%;作为对比,谷歌预计超算Summit要得到保真度为0.1%的结果,需要耗费1万年。基于此,谷歌宣称实现了“量子优越性”。

三、“量子优越性”工作的争议

实际上,“量子优越性”代表了两个方面的竞争,一方面量子芯片的比特数和性能不断扩张,在某些问题上展现出极强的计算能力;另一方面,经典算法和模拟的工程化实现也可以不断优化,提升经典算法的效率和计算能力。所以,如果能够提升经典模拟的能力,那么谷歌的量子设备有可能就无法打败最强超算,从而“称霸”失败。实际上这是极有可能的,因为谷歌也无法保证他们在做经典模拟时已经达到了最优,包括他们所使用的薛定谔-费曼算法,以及对超算工程化实现的优化。

有趣的是,IBM是第一个跳出来表示“不服”的。IBM在10月21的arXiv上论文“Leveraging Secondary Storage to Simulation Deep 54-qubit Sycamore Circuits”中指出,谷歌对随机量子线路的经典模拟优化得并不好,如果采用内存和硬盘混合存储方案,模拟53比特、20深度的量子随机线路采样,仅需2.5天。IBM还宣称这只是他们保守的估计,“一万年太久,只争朝夕”。

其实,IBM说可以更快地在经典计算机上模拟也不足为奇。毕竟经典算法的发展,以及超算上的工程化实现,还是有提升空间的。“量子优越性”本身也是经典计算和量子计算Battle的过程。说不定再过段时间,经典模拟的速度可以直接超过谷歌的Sycamore量子计算系统。

但是可以肯定的是,谷歌的工作确实体现了超导量子计算的快速发展,至少已经到了在某些问题上可以跟目前最强超算比一比的能力了。这种实验技术上的进步,也许比“量子优越性”来的更实在。从这个意义上,谷歌有没有实现“量子优越性”这件事很重要,但也许也并不是那么重要。因为量子态的空间维度是随比特数指数增加的,即便谷歌此次“量子优越性”的宣称失败了,但随着量子比特数继续扩张,“量子优越性”也会迟早到来。

四、量子计算的下步路在何方?

纵观量子计算的发展,我们可以明显感受到量子计算技术的进步是显著的。尤其是近几年,这个方向进入了一个技术爆发区。各个量子计算物理体系都得到了长足的发展,以超导为代表的量子计算体系已经突破到50比特左右的规模,离子、原子体系也突破了20个比特的规模[8],光子体系在2018年已实现了18比特纠缠[9]。

需要注意的是,谷歌此次宣称的“量子优越性”,目的仅仅是为了在实验上证明量子计算机确实有超越目前最强超算的能力,这并不意味着我们已经实现了实用化的量子计算机。“量子优越性”对于量子计算的发展,仅仅是一个开始。

首先,谷歌的工作来看,虽然他们在比特操控和读取上都达到了极高精度,但是运行20层量子线路后,保真度仅达到了0.2%,这样的精度完全无法支撑大规模量子算法的实验实现;此外,谷歌用来演示量子优越性的问题是没有实用价值的,它的目的仅在于证明量子计算的计算能力。因此,实现通用量子计算还需要很长的时间,我们需要在量子纠错得到突破,以支撑保持高品质地扩展量子比特数,并探索如何有效地发挥量子计算机的优势来解决真正有用的问题。

那么下一步,量子计算的路在何方?2019年9月15日在合肥成功举办的新兴量子技术国际会议形成了《量子信息和量子技术白皮书(合肥宣言)》,国际专家在宣言中对量子计算发展的三个阶段达成了共识,“要构建一台真正具有通用计算能力的量子计算机,仍需要长期的努力。”

为了领域的健康长期发展,除了要在基础研究领域做好操纵精度、可容错之外,规模化、实用性的量子计算研究可以沿如下路线开展。第一个阶段是实现“量子优越性”或称“量子称霸”,即量子模拟机针对特定问题的计算能力超越经典超级计算机,这一阶段性目标可在近期实现。第二个阶段是实现具有应用价值的专用量子模拟系统,可在组合优化、量子化学、机器学习等方面发挥效用。第三个阶段是实现可编程的通用量子计算机,能在经典密码破解、大数据搜索、人工智能等方面发挥巨大作用。实现通用可编程量子计算机还需要全世界学术界的长期艰苦努力。”

五、国内相关领域进展和布局

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读