加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 移动互联 > 正文

假如谷歌的“量子优越性”是一场革命,我们还应该知道什么?

发布时间:2019-11-07 05:55:01 所属栏目:移动互联 来源:camel
导读:本文转自雷锋网,如需转载请至雷锋网官网申请授权。 2019年10月23日或许将是人类史上值得纪念的日子,但也可能不是。在这一天,谷歌正式在《Nature》上发表了他们关于验证量子优越性(即在特定任务上量子计算机远远优于传统计算机)的论文,并被Nature放在

所谓“囚禁离子”,即用精心调制的激光脉冲制造一个势能阱来困住离子,使它们进入叠加态。这也是最早使用的量子逻辑门背后的技术。这种技术有完美的再现性(reproductivity),长生命周期,不错的激光可控性,但实现起来却并不容易,在17年的时候,研发这一技术的ionQ也仅能把五个量子比特加入到可编程设备中。

随着超导技术的发展,2010 年开始,囚禁离子技术遭遇了强大的挑战者: 超导体制成的电流回路。这方面的技术代表是谷歌和IBM(所以可以想见为什么当谷歌发表“量子优越性”的研究时IBM第一个站出来质疑,不是冤家不聚头)。所谓超导体是由接近绝对零度时、电阻为0的物质。量子比特的 0 和 1 由不同的电流强度表示。该技术有许多吸引人的优点:1、电流回路可以被肉眼观察到 ;2、使用简单的微波仪器就能控制,不需要对操作要求苛刻的激光;3、使用传统计算机芯片制造技术就能生产;4、运转速度非常快。但是,超导技术有一个致命缺陷:环境噪音。即使是控制设备的噪音,也能在远远不足一微秒的瞬间扰乱量子叠加。如今工程技术的优化,已使电路的稳定性提高了近百万倍,所以量子叠加状态可以维持数十微秒,但这仍远远不如离子。

假如谷歌的“量子优越性”是一场革命,我们还应该知道什么?

其他另辟蹊径的包括D-Wave的量子退火方法。2007 年,加拿大初创公司 D-Wave Systems 宣布,他们使用 16 个超导量子比特成功制成量子计算机。这个宣布最初震惊了世界,不过人们发现D-Wave 的机器并没有使所有的量子比特发生纠缠,并且不能一个量子比特接着一个量子比特地编程,而是使用了“量子退火”的技术,每个量子比特只和临近的量子比特纠缠并交互,这并没有建立起一组并行计算,而是一个整体上的、单一的量子状态。D-Wave 开发者希望把复杂的数学问题映射到该状态,然后使用量子效应寻找最小值。对于优化问题(比如提高交通效率的)来说,这是一项很有潜力的技术。但批评者们指出:D-Wave 并没有攻克许多公认的量子计算难题,比如错误修正。包括谷歌和洛克希德马丁在内的几家公司,购买并测试了 D-Wave 的设备,他们初步的共识是,D-Wave 做到了一些能称之为量子计算的东西,而且在处理一些特定任务时,他们的设备确实比传统计算机要快。

其次是英特尔为代表的硅量子点技术,这也经常被称为“人造原子”。一个量子点的量子比特是一块极小的材料,像原子一样,它身上电子的量子态可以用来作为叠加态。不同于离子或原子,量子点不需要用激光来困住它。早期的电子点用几近完美的砷化镓晶体制作,但研究人员们更倾向于硅,因为可以借助半导体产业的巨大产能。但目前来看,基于硅的量子比特研究,大大落后于囚禁离子和超导量子技术。

另一个具有代表性的则是微软选择的基于非阿贝尔任意子(nonabelian anyons)的拓扑量子比特( topological qubits)。这些已经不再是具体的物体,而是沿着物质边缘游动的准粒子(quasiparticles),它们的量子态由不同的交叉路线(braiding paths)来实现。因为交叉路线的形状导致了量子叠加,它们会受到拓扑保护(topologically protected)而不至于崩溃,这类似于打结的鞋带不会散开。这也意味着,理论上拓扑量子计算机不需要在错误修正上花费那么多量子比特。不过这种技术最终是否能够在实验上做出来,仍然待定。

钻石空位的方法本质上即利用钻石中的瑕疵作为量子比特。具体来讲,钻石的碳原子形成了正四面体的结构,而研究者将其中的一个碳原子替换为氮原子,形成一个氮晶格空位中心,游离的氮原子核和多出的一个电子共同构成了两个量子比特。(更准确地说,是用它们的“自旋”来作为量子比特)这种方法不需要低温、激光等极端技术要求,室温下即可实现,但缺点在于并不是那么容易实现量子态的纠缠。

这里需要指出的是,尽管当前各家企业在媒体中都有炒作其在该领域的先进性,但事实上没有人对量子计算有足够的了解,未来的量子计算机最终会采用哪种技术并没有定论。甚至有人认为“未来的量子计算机很可能是一个混合体,由超快的超导体量子比特对算法进行运算,然后把结果扔给更稳定的离子存储;与此同时,光子在机器的不同部件之间或量子网络的节点之间传递信息。”

三、量子优越性

量子计算机的研制是一个极具挑战且周期可能较长的工作,尽管近年来量子计算的规模逐渐发展到50个左右,但真正具备实用化的通用量子计算机可能只是需要10万-100万量级的量子比特。因此为了推动量子计算机的研制,就必须把整个过程划分为一个个的小目标,根据这些小目标来不断向最终的成功靠近。

假如谷歌的“量子优越性”是一场革命,我们还应该知道什么?

今年9月份在合肥举办的新兴量子技术国际大会的白皮书上提到了当前量子计算的研究路线:“为了领域的健康长期发展,除了要在基础研究领域做好操纵精度、可容错之外,规模化、实用性的量子计算研究可以沿如下路线开展。第一个阶段是实现‘量子优越性’,即量子模拟机针对特定问题的计算能力超越经典超级计算机,这一阶段性目标可在近期实现。第二个阶段是实现具有应用价值的专用量子模拟系统,可在组合优化、量子化学、机器学习等方面发挥效用。第三个阶段是实现可编程的通用量子计算机,能在经典密码破解、大数据搜索、人工智能等方面发挥巨大作用。实现通用可编程量子计算机还需要全世界学术界的长期艰苦努力。” [4]

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读