加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 编程 > 正文

潮科技 | 光纤激光水听器研究进展

发布时间:2018-11-13 09:41:42 所属栏目:编程 来源:36氪
导读:原标题:潮科技 | 光纤激光水听器研究进展 编者按:本文是36氪“边界计划”的转载内容,来自微信公众号“MEMS”(ID:MEMSensor);36氪经授权转载。 一、引言 声波是人类已知的唯一能在海水中远距离传输的能量形式。水听器(Hydrophone)是利用在海洋中传播

2002年,澳大利亚国防科技组织(DSTO)与泰雷斯水下系统(Thales Underwater System)公司达成协议,合作深入开发光纤水听器技术,以将该技术用于防卫及商用系统。2005年,DSTO的Fostor等提出了一种机械支撑的光纤激光水听器结构。随后为了进一步适应水下工作环境的静压强,Goodman等对该结构进行了改进,通过引入弹性气囊来实现静压平衡。2009年报道了四基元光纤水听器海试情况,水听器尺寸为8mm×73mm,装配后为13mm×190mm,用臂差为30m的干涉仪解调得到声压灵敏度为-140dB re 1pm/μPa。该水听器系统的噪声水平与零级海况相当,工作深度大于30m,可以成功探测到目标航迹。2010年,泰雷斯Bedwell等对光纤激光水听器的透射谱、噪声压、声压灵敏度频响特性、温度特性等进行了细致地研究,传感器一致性是走向应用化的必要途径,同时报道了以8元光纤激光水听器为基的拖曳阵列。

澳大利亚新南威尔士大学在光纤激光水听器方面也进行了较多的研究工作。2010年,Asrul等报道了增敏的复合腔光纤激光水听器(CCFL),利用了CCFL固有的非线性相位条件实现增敏。它由3个FBG串联构成两个不同长度的腔,一个腔产生响应,就能实现增敏。理论估计,其增敏效果与普通的相比提升40dB。实验验证,与普通的相比提升了14dB。

在干端的解调技术方面,为了实现高精度的水声探测,一般采用基于光纤干涉仪的方法。这样,对于光纤激光水听器的解调,基本上完全可以采用干涉式水听器的解调技术。所不同的是,对于光纤激光水听器,激光器(光源)在湿端,而光纤干涉仪在干端;而干涉式光纤水听器恰好相反。基于干涉仪的解调方法主要有相位跟踪法、外差法、相位产生载波法、基于3×3耦合器的解调方法等,波长分辨率可高达10-7。

在我国,光纤激光水听器技术主要集中在2000年以后,典型的研制单位包括中国科学院半导体研究所、国防科学技术大学、海军工程大学、山东省科学院激光研究所等,山东大学、浙江大学、暨南大学等也开展了相关的基础研究工作。现阶段我国大多数研制单位在探头技术及复用技术的基础研究中倾注更多精力。

2009年,国防科技大学马丽娜等报道了平坦频响和高声压灵敏度的DFB光纤激光水听器结构。其方案是在裸光纤激光器外套金属壳和聚合物层,用来感受声压,两端固定在毛细管上。它的声压灵敏度高达102.77dB re 1Hz/Pa,2.5 kHz内频响平坦,起伏少于1.5dB。海军工程大学谭波等报道了分布反馈光纤激光水听器封装结构的设计。针对水声探测时频响曲线起伏较大的问题,设计了一种开孔套管式封装结构、夹层式水听器结构等。通过对DFB 激光器的封装,使其张紧后被聚氨酯固定于开孔套筒的中心轴线上,利用开孔套管的保护作用以及施加于光纤激光器两端的拉力来抑制水声探测过程中频响曲线的起伏。试验结果显示,光纤激光水听器在20~800Hz的声压灵敏度达到-140dB re 1pm/μPa左右,灵敏度起伏不高于±1.5dB。

2012年,山东省科学院Sun等对光纤激光器进行封装,并研制了基于波分复用的4元 DFB光纤激光水听器阵列。此阵列平坦的声压响应为115±3dB re 1Hz/Pa,频率范围20Hz~20kHz。

综上所述,光纤激光水听器技术经过二十年的发展,逐渐走向成熟,从实验室基础研究逐渐扩展为应用研究,并且开展了有针对性的水下应用试验。一方面,我们看到了光纤激光水听器有着独特的优势,相关的应用研究必然会得到更广泛的关注,有着广阔的应用前景。另一方面,随着研究的深入,更多的问题接踵而至,如系统的稳定性、大规模复用、抗环境干扰等,成为目前亟待解决的问题。总体上讲,我国的光纤激光水听器技术发展水平与国际知名的团队相比,尚有五至十年的差距,开展好实用化研究是当务之急。

四、中国科学院半导体研究所研究进展

中国科学院半导体研究所在光纤激光水听器基础理论和应用方面都开展了深入的研究,具体内容涉及分布式反馈光纤激光器的研制、解调技术、水听器的封装技术、阵列技术等多个方面,完成多次外场试验,部分研究成果成功转化进军、民领域的行业应用。下面,本文将总结2005年以来中国科学院半导体研究所有关光纤激光水听器相关技术的研究工作,主要包含声压式水听器技术、矢量水听器技术、水听器阵列技术、外场实验及行业应用等。

⒈ 光纤激光声压式水听器

早期的水听器都是感测声场的声压(标量)的,这其中涉及两项关键技术,增敏和频响控制。从结构上讲,对光纤激光水听器而言,最简单、直接的声压感测方式就是将裸露的光纤激光器直接置于声场之中。声压沿着径向直接作用于光纤,根据虎克定律,光纤会产生轴向变形。但是这种传感方式的灵敏度极低。因此,最先提出了裸光纤激光器包覆有机弹性材料的增敏方式。这种增敏方法可以极大地增加受压面积,从而提高传感器的灵敏度。但是涂覆材料的一致性难以保证,且涂覆半径不能无限制的增加。因此如何进一步提高灵敏度成为该项研究的热点。2008年,张文涛等首次提出了基于双膜片结构的光纤激光水听器。

潮科技 | 光纤激光水听器研究进展


图5 双膜片光纤激光水听器

如图5和图6所示,光纤激光器的两端分别固定在两个膜片中心,当外界声压通过透声橡胶传入传感器壳体,会同时使得两个膜片反向变形,进而拉伸光纤激光器产生增敏应变。这种增敏方式直接利用声压产生光纤的轴向应变,不再需要通过涂覆材料的泊松效应传递,因此灵敏度有了极大的提高。起初制成的传感器获得-163dB re 1pm/μPa的灵敏度;后续通过参数调整及不断地改进,目前水听器在20~2000Hz频响宽度内,灵敏度达-140dB re 1pm/μPa。

潮科技 | 光纤激光水听器研究进展

图6 光纤激光水听器实物图

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读