加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营 > 正文

基于深度学习的图像超分辨率重建技术的研究

发布时间:2019-11-28 07:54:31 所属栏目:运营 来源:安防知识网|0
导读:副标题#e# 图像的超分辨率重建技术指的是将给定的低分辨率图像通过特定的算法恢复成相应的高分辨率图像。随着人工智能的不断发展,超分辨率重建技术在视频图像压缩传输、医学成像、遥感成像、视频感知与监控等领域得到了广泛的应用与研究。 本文简要介绍了

  基于插值的方法将每一张图像都看做是图像平面上的一个点,那么对超分辨率图像的估计可以看做是利用已知的像素信息为平面上未知的像素信息进行拟合的过程,这通常由一个预定义的变换函数或者插值核来完成。基于插值的方法计算简单、易于理解,但是也存在着一些明显的缺陷。

  首先,它假设像素灰度值的变化是一个连续的、平滑的过程,但实际上这种假设并不完全成立。其次,在重建过程中,仅根据一个事先定义的转换函数来计算超分辨率图像,不考虑图像的降质退化模型,往往会导致复原出的图像出现模糊、锯齿等现象。常见的基于插值的方法包括最近邻插值法、双线性插值法和双立方插值法等。(2) 基于重构的超分辨率重建

  基于重构的方法则是从图像的降质退化模型出发,假定高分辨率图像是经过了适当的运动变换、模糊及噪声才得到低分辨率图像。这种方法通过提取低分辨率图像中的关键信息,并结合对未知的超分辨率图像的先验知识来约束超分辨率图像的生成。常见的基于重构的方法包括迭代反投影法、凸集投影法和最大后验概率法等。(3) 基于学习的超分辨率重建

  基于学习的方法则是利用大量的训练数据,从中学习低分辨率图像和高分辨率图像之间某种对应关系,然后根据学习到的映射关系来预测低分辨率图像所对应的高分辨率图像,从而实现图像的超分辨率重建过程。常见的基于学习的方法包括流形学习、稀疏编码和深度学习方法。3 基于深度学习的图像超分辨率重建技术

  机器学习是人工智能的一个重要分支,而深度学习则是机器学习中最主要的一个算法,其旨在通过多层非线性变换,提取数据的高层抽象特征,学习数据潜在的分布规律,从而获取对新数据做出合理的判断或者预测的能力。随着人工智能和计算机硬件的不断发展,Hinton等人在2006年提出了深度学习这一概念,其旨在利用多层非线性变换提取数据的高层抽象特征。凭借着强大的拟合能力,深度学习开始在各个领域崭露头角,特别是在图像与视觉领域,卷积神经网络大放异,这也使得越来越多的研究者开始尝试将深度学习引入到超分辨率重建领域。2014年,Dong等人首次将深度学习应用到图像超分辨率重建领域,他们使用一个三层的卷积神经网络学习低分辨率图像与高分辨率图像之间映射关系,自此,在超分辨率重建率领域掀起了深度学习的浪潮。

  基于深度学习的图像超分辨率技术的重建流程主要包括以下几个步骤:

       (1) 特征提取:首先对输入的低分辨率图像进行去噪、上采样等预处理,然后将处理后的图像送入神经网络,拟合图像中的非线性特征,提取代表图像细节的高频信息;

  (2) 设计网络结构及损失函数:组合卷积神经网络及多个残差块,搭建网络模型,并根据先验知识设计损失函数;

  (3) 训练模型:确定优化器及学习参数,使用反向传播算法更新网络参数,通过最小化损失函数提升模型的学习能力;’

  (4) 验证模型:根据训练后的模型在验证集上的表现,对现有网络模型做出评估,并据此对模型做出相应的调整。以下是几种常见的基于深度学习的超分辨率重建技术及其对比。

  (1) SRCNN

  SRCNN(Super-Resolution Convolutional Neural Network)是首次在超分辨率重建领域应用卷积神经网络的深度学习模型。对于输入的一张低分辨率图像,SRCNN首先使用双立方插值将其放大至目标尺寸,然后利用一个三层的卷积神经网络去拟合低分辨率图像与高分辨率图像之间的非线性映射,最后将网络输出的结果作为重建后的高分辨率图像。SRCNN的网络结构如图2所示。

tuxiang2.jpg

  图2 SRCNN的网络结构

  (2) ESPCN

  与SRCNN不同,ESPCN (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network)在将低分辨率图像送入神经网络之前,无需对给定的低分辨率图像进行一个上采样过程,得到与目标高分辨率图像相同大小的低分辨率图像。如图3所示,ESPCN中引入一个亚像素卷积层(Sub-pixel convolution layer),来间接实现图像的放大过程。这种做法极大降低了SRCNN的计算量,提高了重建效率。tuxiang3.jpg  图3 ESPCN的网络结构

  (3) SRGAN

  与上述两种方法类似,大部分基于深度学习的图像超分辨率重建技术使用均方误差作为其网络训练过程中使用的损失函数,但是由于均方差本身的性质,往往会导致复原出的图像出现高频信息丢失的问题。而生成对抗网络(Generative Adversarial Networks, GAN)则通过其中的鉴别器网络很好的解决了这个问题,GAN的优势就是生成符合视觉习惯的逼真图像,所以SRGAN (Photo-Realistic Single Image SuperResolution Using a Generative Adversarial Network)的作者就将GAN引入了图像超分辨率重建领域。

  如图4所示,SRGAN也是由一个生成器和一个鉴别器组成。生成器负责合成高分辨率图像,鉴别器用于判断给定的图像是来自生成器还是真实样本。通过一个二元零和博弈的对抗过程,使得生成器能够将给定的低分辨率图像复原为高分辨率图像。

tuxiang4.jpg

  图4 SRGAN的网络结构

  总结与展望

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读