加入收藏 | 设为首页 | 会员中心 | 我要投稿 核心网 (https://www.hxwgxz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

他的人工智能工具,能够窥探活体细胞内部的奥秘

发布时间:2019-08-05 13:29:09 所属栏目:建站 来源:John Pavlus
导读:▲ 图:来自艾伦细胞科学研究所的计算机视觉研究员Greg Johnson已经证明,深度学习神经网络能够从未经标记的显微照片中提取细胞解剖结构细节,并据此创建出复杂的细胞模型。(Chona Kasinger/图片来源) 首先声明一点,大家在高中生物教科书里学习到的细胞

如果我们能够对活体细胞进行成像,就能够同时看到所有构造,这将推动生物学领域上升至新的高度。我们可以拆开这辆车,使用X射线透视车辆结构,甚至亲自开起来试试。也许我们有一天可以打造出自己的引擎。总之,这至少能让我们更好地了解细胞当中到底发生了什么。

问:是什么激发了你利用深度学习技术标记细胞内部的灵感?

Johnson:在我看到人们开始利用深度学习(2014年首次使用生成对抗网络)生成仿真面孔时,我突然意识到“哦,我们也可以用它生成细胞。”这就是我的工作内容:模拟细胞结构。我想,“如果我们能够通过特定标记实验生成细胞图像,并使其质量达到生物学家们也无法判断真伪的水平,结果会怎样?”如果能够实现这项目标,那么在某种意义上,可以说我们建立起了一套能够真正实验内容的模型。

问:是否存在这样一种风险,AI生成了某些并不存在的结构?

Johnson:我们真正需要的是预测实验结果,以帮助科学家们优先进行他们认为最有价值的实验方向。

假设我有一份细胞图像,该软件将预测细胞内物质的位置排布模式——例如线粒体。我们在无标记模型中观察线粒体时,看到的实际是AI对于线粒体所在位置的预测结果。换言之,这类似于给出了细胞内线粒体的平均位置。

我们也可以换一种使用方式:假设我打算进行一项实际实验,利用荧光蛋白标记某些细胞。但我并没有真正执行实验,而是直接采用那些成本低廉的明场显微镜图像,并利用机器预测这一标记实验的可能结果。接下来,如果我在生成的预测图像中看到了值得深入挖掘的结果,我可以再推进到实际实验阶段。

问:那么,您是打算使用AI技术改善实验,还是要替代实验?

Johnson:我认为这两个答案都不算错。一位科学家曾说,“实验的目的在于证明你的模型是错的。”因为我们的深度学习模型完全利用荧光成像实验数据的训练,所以我们每一次收集到的新实验数据都将指出该模型的错误。我可以将这些数据添加到模型当中,以确保其在下一次预测时做得更好。

这是一种双赢书面,因为无论该模型能否正确预测实验结果,其获得的新数据都能帮助我们未来做出更准确的预测。

如果把这个过程推向极端,我们最终会得到一套机器学习模型,我们可以向其中输入任何想要运行的实验参数。接下来,它会给出大家想要测量的一切结果。而如果这些结论与实际实验中的真实数据相同,那么我们就拥有了一套从基本面来讲能够准确反映生物学原理的模型。

问:这种方法是否存在争议?

Johnson:大约两到三年之前,人们可能会看着它说,“我不太相信这玩意。”我参加过不少会议,展示了自己的成果,而有些人的反馈是“把这垃圾扔出去。”但现在,人们开始接纳这种基本思路。事实上,AI技术在整个细胞生物学成像领域正得到迅速推广。

问:为什么会发生这样的改变?

Johnson:我的博士课题主要就是利用经典统计建模完成这类工作。虽然统计确实是一种非常非常强大的工具,但统计工具可能会也可能不会产生能够达到真实质量的细胞图像。我可以在细胞之内进行模糊分布,然后指定某个亮度更高的位置认为其就是线粒体的所处位置。但人们会说,“可是,这看起来根本不像真正的细胞。”这确实让我非常沮丧,因为我所使用的数学与概率计算都正确无误。

但在我们看到第一张来自无标记预测模型的图像时,其看起来真的非常真实。我们能够明确看到细胞中各个组成部分的分布位置。人们惊讶得合不拢嘴,然后我们就决定沿着这个方向探索下去。

问:眼见是否为实?

Johnson:是的,当然为实。实际上,我们使用明场图像作为指导的结果让人们感到震惊,因为在成像领域,明场图像主要充当一次性数据。当我们拍摄这些组织图像时,仅仅需要在上面照射正常的光线,目的是弄清楚显微镜是否正常聚焦在样品之上。然后,这些图像就被保存在磁盘上的某个地方,再也没人拿出来用了。相较于极为昂贵的荧光分子标记实验,明场图像的成本几乎可以忽略不计。如果能够利用这些昂贵的数据训练深度学习模型,而后借此预测所拍摄明场图像的细胞内部结构,将为我们节约下大量的时间与金钱。

问:您是否需要训练多个独立的深度学习模型,以识别细胞内的不同部分?这些模型在识别效果上是否确有差别?

Johnson:与细胞膜结合的细胞器,例如细胞核与线粒体,一般比较容易预测。其它非膜结合细胞器,例如微管或者高尔基体,则很难预测。究其原因,在于这些细胞器的密度与细胞内周边区域的密度差别不大。

问:那您是如何克服这些局限的?

Johnson:一般我们会利用偏振光或者其它光学性成像技巧以获得不同级别的图像内对比度,而不仅仅使用正常的透射光。

或者,如果我们当前的实验只能使用三个荧光标记,我会刻意避免利用它们标记系统已经擅长预测的结构,而是用在相对较难预测的结构身上——例如肌动蛋白与微管等细胞内结构。

问:我们观察到,您与艾伦研究所(the Allen Institute)的其他科学家可以不断改进这些模型,而“集成细胞”正是这项工作的后续成果。那么,艾伦研究所之外的科学家们也能享受由此带来的便利吗? 

Johnson:可以的,这也是我们整个项目中的一大重要组成部分。当谷歌构建AlphaGo并击败全球最强的围棋选手时,这套系统已经拥有相当于人类200年的训练积累。除了亚马逊或者微软之外,没有其它机构能够拿出同样的资源进行如此充分的训练。我们希望其他人也能在自己的实验室中利用我们的细胞系与技术进行自己的研究——当然,他们不一定需要像我们这样设置非常精细的操作流程。

(编辑:核心网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读